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Abstract

The Price of Anarchy in congestion games has attracted a lot of re-
search over the last decade. This resulted in a thorough understanding
of this concept. In contrast the Price of Stability, which is an equally
interesting concept, is much less understood.

In this paper, we consider congestion games with polynomial cost
functions with nonnegative coefficients and maximum degree d. We
give matching bounds for the Price of Stability in such games, i.e., our
technique provides the exact value for any degree d.

For linear congestion games, tight bounds were previously known.
Those bounds hold even for the more restricted case of dominant equi-
libria, which may not exist. We give a separation result showing that
already for congestion games with quadratic cost functions this is not
possible; that is, the Price of Anarchy for the subclass of games that
admit a dominant strategy equilibrium is strictly smaller than the Price
of Stability for the general class.

1 Introduction

During the last decade, the quantification of the inefficiency of game-theoretic
equilibria has been a popular and successful line of research. The two
most widely adopted measures for this inefficiency are the Price of Anarchy
(PoA) [17] and the Price of Stability (PoS) [3].

Both concepts compare the social cost in a Nash equilibrium to the
optimum social cost that could be achieved via central control. The PoA is
pessimistic and considers the worst-case such Nash equilibrium, while the
PoS is optimistic and considers the best-case Nash equilibrium. Therefore,
the PoA can be used as an absolute worst-case guarantee in a scenario where
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we have no control over equilibrium selection. On the other hand, the PoS
gives an estimate of what is the best we can hope for in a Nash equilibrium;
for example, if the players collaborate to find the optimal Nash equilibrium,
or if a trusted mediator suggest this solution to them. Moreover, it is a
much more accurate measure for those instances that possess unique Nash
equilibria.

Congestion games [21] have been a driving force in recent research on
these inefficiency concepts. In a congestion game, we are given a set of
resources and each player selects a subset of them (e.g. a path in a network).
Each resource has a cost function that only depends on the number of players
that use it. Each player aspires to minimise the sum of the resources’ costs
in its strategy given the strategies chosen by the other players. Congestion
games always admit a pure Nash equilibrium [21], where players pick a single
strategy and do not randomize. Rosenthal [21] showed this by means of a
potential function having the following property: if a single player deviates
to a different strategy then the value of the potential changes by the same
amount as the cost of the deviating player. Pure Nash equilibria correspond
to local optima of the potential function. Games admitting such a potential
function are called potential games and every potential game is isomorphic
to a congestion game [20].

Today we have a strong theory which provides a thorough understanding
of the PoA in congestion games [1, 4, 5, 11, 22]. This theory includes the
knowledge of the exact value of the PoA for games with linear [4, 11] and
polynomial [1] cost functions, a recipe for computing the PoA for general
classes of cost functions [22], and an understanding of the “complexity” of
the strategy space required to achieve the worst case PoA [5].

In contrast, we still only have a very limited understanding of the Price
of Stability (PoS) in congestion games. Exact values for the PoS are only
known for congestion games with linear cost functions [9, 14] and certain
network cost sharing games [3]. The reason for this is that there are more
considerations when bounding the PoS as compared to bounding the PoA.
For example, for linear congestion games, the techniques used to bound the
PoS are considerably more involved than those used to bound the PoA.

A fundamental concept in the design of games is the notion of a dominant-
strategy equilibrium. In such an equilibrium each player chooses a strategy
which is better than any other strategy no matter what the other players do.
It is well-known that such equilibria do not always exist, as the requirements
imposed are too strong. However, it is appealing for a game designer, as it
makes outcome prediction easy. It also simplifies the strategic reasoning of
the players and is therefore an important concept in mechanism design. If
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we restrict to instances where such equilibria exist, it is natural to ask how
inefficient those equilibria can be. Interestingly, for linear congestion games,
they can be as inefficient as the PoS [9, 14, 12].

1.1 Contribution and High-Level Idea

Results. In this paper we study the fundamental class of congestion games
with polynomial cost functions of maximum degree d and nonnegative co-
efficients. Our main result reduces the problem of finding the value of the
Price of Stability to a single-parameter optimization problem. It can be
summarized in the following theorem (which combines Theorem 3.3 and
Theorem 4.5).

Theorem 1.1 For congestion games with polynomial cost functions with
maximum degree d and nonnegative coefficients, the Price of Stability is
given by

PoS = max
r>1

(2dd+ 2d − 1) · rd+1 − (d+ 1) · rd + 1

(2d + d− 1) · rd+1 − (d+ 1) · rd + 2dd− d+ 1
.

For any degree d, this gives the exact value of the Price of Stability. For
example, for d = 1 and d = 2, we get

max
r

3 r2 − 2 r + 1

2 r2 − 2 r + 2
= 1 +

√
3

3
≈ 1.577 and max

r

11 r3 − 3 r2 + 1

5 r3 − 3 r2 + 7
≈ 2.36,

respectively. The PoS converges to d+ 1 for large d.
We further show that in contrast to linear congestion games [14, 12],

already for d = 2, there is no instance which admits a dominant strategy
equilibrium and achieves this value. More precisely, we show in Theorem 5.2
that for the subclass of games that admit a dominant strategy equilibrium
the Price of Anarchy is strictly smaller than the Price of Stability for the
general class.

Upper Bound Techniques. Both finding upper and lower bounds for
the PoS, seem to be a much more complicated task than bounding the PoA.
For the PoA of a class of games, one needs to capture the worst-case example
of any Nash equilibrium, and the PoA methodology has been heavily based
on this fact. On the other hand, for the PoS of the same class one needs to
capture the worst-case instance of the best Nash equilibrium. So far, we do
not know a useful characterization of the set of best-case Nash equilibria.
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It is not straightforward to transfer the techniques for the PoA to solve the
respective PoS problem.

A standard approach that has been followed for upper bounding the PoS
can be summarised as follows:

1. Define a restricted subset R of Nash equilibria.

2. Find the Price of Anarchy with respect to Nash equilibria that belong
in R.

The above recipe introduces new challenges: What is a good choice for
R, and more importantly, how can we incorporate the description of R in
the Price of Anarchy methodology? For example, if R is chosen to be the
set of all Nash equilibria, then one obtains the PoA bound. Finding an
appropriate restriction is a non-trivial task and might depend on the nature
of the game, so attempts vary in the description level of R from natural, “as
the set of equilibria with optimum potential”, to the rather more technical
definitions like “the equilibria that can be reached from a best-response path
starting from an optimal setup”.

Like previous work (see for example [3, 6, 9, 14, 12]) we consider the
PoA of Nash equilibria with minimum potential (or in fact with potential
smaller than the one achieved in the optimum).

Then we use a linear combination of two inequalities, which are derived
from the potential and the Nash equilibrium conditions, respectively. Using
only the Nash inequality gives the PoA value [1]. Using only the potential
inequality gives an upper bound of d+1. The question is what is the best way
to combine these inequalities to obtain the minimum possible upper bound?
Caragiannis et al. [9] showed how to do this for linear congestion games.
Our analysis shows how to combine them optimally for all polynomials (cf.
parameter ν̂ in Definition 4.2).

The main technical challenge is to extend the techniques used for proving
upper bounds for the PoA [1, 11, 22]. In general those techniques involve
optimizing over two parameters λ, µ such that the resulting upper bound
on the PoA is minimized and certain technical conditions are satisfied –
Roughgarden [22] refers to those conditions as (λ, µ)-smoothness. The linear
combination of the two inequalities mentioned above adds a third parameter
ν, which makes the analysis much more involved.

Lower Bound Techniques. Proving lower bounds for the PoA and PoS
is usually done by constructing specific classes of instances. However, there
is a conceptual difference: Every Nash equilibrium provides a lower bound
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on the PoA, while for the PoS we need to give a Nash equilibrium and prove
that this is the best Nash equilibrium. To guarantee optimality, the main
approach is based on constructing games with unique equilibria. One way
to guarantee this is to define a game with a dominant-strategy equilibrium.
This approach gives tight lower bounds in congestion games with linear
cost functions [14, 12]. Recall, that our separation result (Theorem 5.2)
shows that, already for d = 2, dominant-strategy equilibria will not give us
a tight lower bound. Thus, we use a different approach. We construct an
instance with a unique Nash equilibrium and show this by using an inductive
argument (Lemma 3.2).

The construction of our lower bound was governed by the inequalities
used in the proof of the upper bound. At an abstract level, we have to
construct an instance that uses the cost functions and loads on the resource
that make all used inequalities tight. This is not an easy task as there are
many inequalities: most prominently, one derived from the Nash equilibrium
condition, one from the potential, and a third one that upper bounds a linear
combination of them (see Proposition 4.4). To achieve this we had to come
up with a completely novel construction.

1.2 Related Work

The term Price of Stability1 was introduced by Anshelevich et al. [3] for a
network design game, which is a congestion game with special decreasing
cost functions. For such games with n players, they showed that the Price
of Stability is exactly Hn, i.e., the n’th harmonic number. For the special
case of undirected networks, the PoS is known to be strictly smaller than Hn

[15, 7, 13, 3], but while the best general upper bound [15] is close to Hn, the
best current lower bound is a constant [8]. For special cases better upper
bound can be achieved. Li [19] showed an upper bound of O(log n/ log log n)
when the players share a common sink, while Fiat et al. [16] showed a better
upper bound of O(log log n) when in addition there is a player in every
vertex of the network. This was very recently improved to O(log log n) by
[18]. Chen and Roughgarden [10] studied the PoS for the weighted variant of
this game, where each player pays for a share of each edge cost proportional
to her weight, and Albers [2] showed that the PoS is Ω(logW/ log logW ),
where W is the sum of the players’ weights.

The PoS has also been studied in congestion games with increasing cost
functions. For linear congestion games, the PoS is equal to 1 +

√
3/3 ≈

1Notice that this concept has been studied already before, see e.g. [23].
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1.577 where the lower bound was shown in [14] and the upper bound in [9].
Bilo[6] showed upper bounds on the PoS of 2.362 and 3.322 for congestion
games with quadratic and cubic functions respectively. He also gives non-
matching lower bounds, which are derived from the lower bound for linear
cost functions in [12].

Awerbuch et al. [4] and Christodoulou and Koutsoupias [11] showed
that the PoA of congestion games with linear cost functions is 5

2 . Aland et.
al. [1] obtained the exact value on the PoA for polynomial cost functions.
Roughgarden’s [22] smoothness framework determines the PoA with respect
to any set of allowable cost functions. These results have been extended to
the more general class of weighted congestion games [1, 4, 5, 11].

Roadmap. The rest of the paper is organized as follows. In Section 2
we introduce polynomial congestion games. In Section 3 and 4, we present
our matching lower and upper bounds on the PoS. We present a separation
result in Section 5. Due to space constraints, some of the proofs are deferred
to the full version of this paper.

2 Definitions

For any positive integer k ∈ N, denote [k] = {1, . . . , k}. A congestion
game [21] is a tuple (N,E, (Si)i∈N , (ce)e∈E), where N = [n] is a set of n
players and E is a set of resources. Each player chooses as her pure strategy
a set si ⊆ E from a given set of available strategies Si ⊆ 2E . Associated
with each resource e ∈ E is a nonnegative cost function ce : N → R+.
In this paper we consider polynomial cost functions with maximum degree
d and nonnegative coefficients; that is every cost function is of the form
ce(x) =

∑d
j=0 ae,j · xj with ae,j ≥ 0 for all j.

A pure strategy profile is a choice of strategies s = (s1, s2, ...sn) ∈ S =
S1×· · ·×Sn by players. We use the standard notation s−i = (s1, . . . , si−1, si+1, . . . sn),
S−i = S1×· · ·×Si−1×Si+1×· · ·×Sn, and s = (si, s−i). For a pure strategy
profile s define the load ne(s) = |i ∈ N : e ∈ si| as the number of players that
use resource e. The cost for player i is defined by Ci(s) =

∑
e∈si ce(ne(s)).

Definition 2.1 A pure strategy profile s is a pure Nash equilibrium if and
only if for every player i ∈ N and for all s′i ∈ Si, we have Ci(s) ≤ Ci(s′i, s−i).

Definition 2.2 A pure strategy profile s is a (weakly) dominant strategy
equilibrium if and only if for every player i ∈ N and for all s′i ∈ Si and
s−i ∈ S−i, we have Ci(s) ≤ Ci(s′i, s−i).
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The social cost of a pure strategy profile s is the sum of the players costs

SC(s) =
∑
i∈N

Ci(s) =
∑
e∈E

ne(s) · ce(ne(s)).

Denote opt = mins SC(s) as the optimum social cost over all strategy pro-
files s ∈ S. The Price of Stability of a congestion game is the social cost of
the best-case Nash equilibrium over the optimum social cost

PoS = min
s is a Nash Equilibrium

SC(s)

opt
.

The PoS for a class of games is the largest PoS among all games in the class.
For a class of games that admit dominant strategy equilibria, the Price

of Anarchy of dominant strategies, dPoA, is the worst case ratio (over all
games) between the social cost of the dominant strategies equilibrium and
the optimum social cost.

Congestion games admit a potential function Φ(s) =
∑

e∈E
∑ne(s)

j=1 ce(j)
which was introduced by Rosenthal [21] and has the following property: for
any two strategy profiles s and (s′i, s−i) that differ only in the strategy of
player i ∈ N , we have Φ(s) − Φ(s′i, s−i) = Ci(s) − Ci(s′i, s−i). Thus, the set
of pure Nash equilibria correspond to local optima of the potential function.
More importantly, there exists a pure Nash eqilibrium s, s.t.

Φ(s) ≤ Φ(s′) for all s′ ∈ S. (1)

3 Lower bound

In this section we use the following instance to show a lower bound on PoS.

Example 3.1 Given nonnegative integers n, k and d, define a congestion
game as follows:

• The set of resources E is partitioned into E = A ∪ B ∪ {Γ} where
A consists of n resources A = {Ai|i ∈ [n]}, B consists of n(n − 1)
resources B = {Bij |i, j ∈ [n], i 6= j}, and Γ is a single resource.

• All cost functions are monomials of degree d given as follows:

– For i ∈ [n] the cost of resource Ai is given by cAi(x) = αi · xd,
where

αi = (k + i)d + ε for sufficiently small ε > 0.

7



– Denote Ti = (k+i)d−(k+i−1)d

(22d−1)
. Resource Bij with i, j ∈ [n], i 6= j

has cost

cBij (x) = βij ·xd where βij =

{
Tj , if i < j,
2dTi , if i > j.

– For resource Γ we have cΓ(x) = xd.

• There are n + k players. Each player i ∈ [n] has two strategies si, s
∗
i

where

si = Γ ∪ {Bij |j ∈ [n], j 6= i} , and

s∗i = Ai ∪ {Bji|j ∈ [n], j 6= i}.

The remaining players i ∈ [n + 1, n + k] are fixed to choose the sin-
gle resource Γ. To simplify notation denote by s = (s1, . . . , sn) and
s∗ = (s∗1, . . . , s

∗
n) the corresponding strategy profiles. Those profiles

correspond to the unique Nash equilibrium and to the optimal alloca-
tion respectively.

In the following lemma we show that s is the unique Nash equilibrium for
the game in Example 3.1. To do so, we show that s1 is a dominant strategy
for player 1 and that given that the first i− 1 players play s1, . . . , si−1, then
si is a dominant strategy for player i ∈ [n].

Lemma 3.2 In the congestion game from Example 3.1, s is the unique Nash
equilibrium.

Proof: We will show that s1 is a dominant strategy for the first player and
that given that the first i−1 players play s1, . . . , si−1, then si is a dominant
strategy for player i, for i = 1 . . . n.

Let (si, s
i−1, j) and (s∗i , s

i−1, j) be the strategy profiles where the first
i − 1 players and j more players play their Nash Equilibrium strategies,
while player i plays si and s∗i respectively. Notice that i ∈ [1, n − 1] and
j ∈ [0, n− i]. Let’s denote the set of the j players by J .

Ci(si, s
i−1, j) = (k + j + i)d +

∑
h≤i−1

βih +
∑
h∈J

βih + 2d ·
∑

h>i and h/∈J

βih.

Similarly

Ci(s
∗
i , s

i−1, j) = αi + 2d
∑
h≤i−1

βhi + 2d
∑
h∈J

βhi +
∑

h>i and h/∈J

βhi.
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We need to show that Ci(si, s
i−1, j) < Ci(s

∗
i , s

i−1, j) for all i = 1, . . . , n
and j = 0, . . . , n− i. Equivalently it is enough to show that

αi > Aij :=(k + i+ j)d +
∑
h≤i−1

(
βih − 2dβhi

)
+
∑
h∈J

(
βih − 2dβhi

)
+

∑
h>i and h/∈J

(
2dβih − βhi)

)
=(k + i+ j)d +

∑
h∈J

(
βih − 2dβhi

)
=(k + i+ j)d +

(
1− 22d

)∑
h∈J

Th

=(k + i+ j)d −
∑
h∈J

(
(k + h)d − (k + h− 1)d

)
.

By convexity of (k + h)d, Aij is maximized when J = {i+ 1, . . . , i+ j}, so

Aij ≤ (k + i+ j)d −
∑

i+1≤h≤i+j

(
(k + h)d − (k + h− 1)d

)
= (k + i)d < αi.

The claim follows. �

We use the instance from Example 3.1 to show the lower bound in the
following theorem. We define ρ = k

n and r = k+n
k = 1+ 1

ρ > 1. We let n→∞
and determine the r > 1 which maximises the resulting lower bound2. Note
that r > 1 is the ratio of the loads on resource Γ in Example 3.1.

Theorem 3.3 For congestion games with polynomial cost functions with
maximum degree d and nonnegative coefficients, we have

PoS ≥ max
r>1

(2dd+ 2d − 1) · rd+1 − (d+ 1) · rd + 1

(2d + d− 1) · rd+1 − (d+ 1) · rd + 2dd− d+ 1
. (2)

Proof: We use the instance from Example 3.1. To show the lower bound we
define ρ = k

n and r = k+n
k = 1 + 1

ρ > 1, we let n → ∞, and we determine
the r > 1 which maximises the resulting lower bound. Note that r > 1 is
the ratio of the loads on resource Γ in Example 3.1.

2Notice that the value r that optimizes the right hand side expression of (2) might not
be rational. The lower bound is still valid as we can approximate an irrational r arbitrarily
close by a rational.
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For every subset D ⊆ E, denote SCD(s) =
∑

e∈D ne(s) · ce(ne(s)) the
contribution of resources in D to SC(s).

By Lemma 3.2, s is the unique Nash equilibrium. So, it suffices to lower
bound SC(s)

SC(s∗) . First observe that

SC(s)

SC(s∗)
=

SCB(s) + SCΓ(s)

SCB(s∗) + SCΓ(s∗) + SCA(s∗)

=

SCB(s)
nd+1 + SCΓ(s)

nd+1

SCB(s∗)
nd+1 + SCΓ(s∗)

nd+1 + SCA(s∗)
nd+1

. (3)

To determine the limit of SC(s)
SC(s∗) for n → ∞, we can determine the limit of

each term independently. Since ne(s
∗) = 1 for all e ∈ A,

lim
n→∞

SCA(s∗)

nd+1
= lim

n→∞

∑
i∈[n] cAi(1)

nd+1
= lim

n→∞

∑
i∈[n] (k + i)d

nd+1

= lim
n→∞

∑
i∈[n]

(
ρ+ i

n

)d
n

=

∫ ρ+1

ρ
xddx =

(1 + ρ)d+1 − ρd+1

d+ 1
. (4)

Each resource in B is used by exactly one player in s and also in s∗. So,

lim
n→∞

SCB(s)

nd+1
= lim

n→∞

SCB(s∗)

nd+1

= lim
n→∞

∑
h≤n

∑
i≤n,i 6=h βih

nd+1

= lim
n→∞

∑
h≤n(2d + 1) · (h− 1) · Th

nd+1

= lim
n→∞

(2d + 1) ·
∑
h≤n

(h− 1)

(k+h)d−(k+h−1)d

(22d−1)

nd+1

=
1

(2d − 1)
lim
n→∞

∑
h≤n

(h− 1)
(k + h)d − (k + h− 1)d

nd+1

=
1

(2d − 1)
lim
n→∞

n (k + n)d −
∑

h≤n(k + h)d

nd+1

=
1

(2d − 1)

(
(1 + ρ)d − (1 + ρ)d+1 − ρd+1

d+ 1

)
, (5)
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where the last step is similar to (4). Moreover,

lim
n→∞

SCΓ(s)

nd+1
= lim

n→∞

(n+ k)d+1

nd+1

= (1 + ρ)d+1, (6)

and

lim
n→∞

SCΓ(s∗)

nd+1
= lim

n→∞

kd+1

nd+1

= ρd+1. (7)

Combining identities (3)-(7) yields

lim
n→∞

SC(s)

SC(s∗)
=

=
(1 + ρ)d − (1+ρ)d+1−ρd+1

d+1 + (2d − 1) · (1 + ρ)d+1

(1 + ρ)d − (1+ρ)d+1−ρd+1

d+1 + (2d − 1) · ρd+1 + (2d − 1) · (1+ρ)d+1−ρd+1

d+1

=
(1 + ρ)d+1

(
(d+ 1)(2d − 1)− 1

)
+ ρd+1 + (d+ 1)(1 + ρ)d

(1 + ρ)d+1(2d − 2) + ρd+1 (d(2d − 1) + 1) + (d+ 1)(1 + ρ)d
. (8)

Recall that we defined r = k+n
k = 1+ 1

ρ > 1. Thus ρ = 1
r−1 and (1+ρ) = r

r−1 .

Substituting this into (8) and multiplying by (r − 1)d+1 gives

lim
n→∞

SC(s)

SC(s∗)
=
rd+1

(
(d+ 1)(2d − 1)− 1

)
+ 1 + (d+ 1)rd(r − 1)

rd+1(2d − 2) + (d(2d − 1) + 1) + (d+ 1)rd(r − 1)

=
(2dd+ 2d − 1)rd+1 − (d+ 1)rd + 1

(2d + d− 1)rd+1 − (d+ 1)rd + 2dd− d+ 1
,

which proves the lower bound. �

4 Upper bound

In this section we show an upper bound on the PoS for polynomial congestion
games. We start with two technical lemmas and a definition, all of which
will be used in the proof of Proposition 4.4. This proposition is the most
technical part of the paper. It shows an upper bound on a linear combination
of two expressions; one is derived from the Nash equilibrium condition and
the other one from the potential. Equipped with this, we prove our upper
bound in Theorem 4.5.
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Lemma 4.1 Let f be a nonnegative and convex function, then for all non-
negative integers x, y with x ≥ y,

∑x
i=y+1 f(i) ≥

∫ x
y f(t)dt+ 1

2(f(x)− f(y)).

Proof: The claim trivially holds for x = y. Since f is nonnegative and
convex, for all j, we have∫ j+1

j
f(t)dt ≤ 1

2
(f(j + 1) + f(j)).

Summing up over all integer j ∈ [y, x− 1] proves the lemma. �

Definition 4.2 Define ν̂ as the minimum ν such that

f(ν) :=

(
2d + (d− 1)

(
1− 1

rd+1

)
− 1

r

)
· ν − d

(
1− 1

rd+1

)
≥ 0

for all r > 1.

Observe that for all d ≥ 1 and r > 1, f(ν) is a monotone increasing function
in ν. Thus ν̂ ∈ (0, 1] is well defined since f(0) < 0 and f(1) > 0 for all
r > 1. Moreover, f(ν) ≥ 0 for all ν ≥ ν̂. We will make use of the following
bounds on ν̂.

Lemma 4.3 Define ν̂ as in Definition 4.2. Then d
2d+d−1

≤ ν̂ < d+1
2d+d−1

.

Proof: The lower bound follows directly from Definition 4.2 with r → ∞.
To see the upper bound recall that f(ν) is monotone increasing in ν, thus,
it suffices to show that f( d+1

2d+d−1
) > 0 for all r > 1. Indeed

f(
d+ 1

2d + d− 1
) =

(
2d + (d− 1)

(
1− 1

rd+1

)
− 1

r

)
· d+ 1

2d + d− 1
− d

(
1− 1

rd+1

)
= d+ 1− (d− 1)(d+ 1)

rd+1(2d + d− 1)
− d+ 1

r(2d + d− 1)
− d+

d

rd+1

> 0,

since r > 1 and for all integer d ≥ 1, we have (d−1)(d+1)
2d+d−1

≤ d and d+1
2d+d−1

≤ 1.
�

Proposition 4.4 Let 1 ≥ ν ≥ ν̂ and define λ = d + 1 − dν and µ =
(2d + d− 1)ν − d. Then for all polynomial cost functions c with maximum
degree d and nonnegative coefficients and for all nonnegative integers x, y
we have

ν · y · c(x+ 1) + (1− ν)(d+ 1)

(
y∑
i=1

c(i)−
x∑
i=1

c(i)

)
≤ (µ+ ν − 1) · x · c(x) + λ · y · c(y).
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Proof: Since c is a polynomial cost function with maximum degree d and
nonnegative coefficients it is sufficient to show the claim for all monomials
of degree t where 0 ≤ t ≤ d. Thus, we will show that

(µ+ ν − 1) · xt+1 + λ · yt+1 − ν · y(x+ 1)t + (1− ν)(d+ 1)

(
x∑
i=1

it −
y∑
i=1

it
)
≥ 0 (9)

for all nonnegative integers x, y and degrees 0 ≤ t ≤ d.
Fix some 0 ≤ t ≤ d. First observe that (9) is trivially fulfilled for y = 0,

as all the negative terms disappear. So in the following we assume y ≥ 1.
Elementary calculations show that (9) holds when 0 ≤ x ≤ y. For a proof

see Lemma 6.1 in the appendix. So in the following we assume x > y ≥ 1.
By Lemma 4.1, we have

x∑
i=1

it −
y∑
i=1

it =

x∑
i=y+1

it ≥ 1

t+ 1
(xt+1 − yt+1) +

1

2
(xt − yt)

≥ 1

d+ 1
(xt+1 − yt+1) +

1

2
(xt − yt). (10)

Moreover, since x ≥ 2 we can bound

(x+ 1)t =
t∑
i=0

(
t

i

)
xt−i ≤ xt + xt−1 ·

t∑
i=1

(
t

i

)(
1

2

)i−1

= xt + xt−1 · 2

((
3

2

)t
− 1

)
. (11)

Using (10) and (11) and by defining r = x
y > 1, we can lower bound the

left-hand-side of (9) by

µ · xt+1 + (λ+ ν − 1) · yt+1 − ν · y(x+ 1)t +
1

2
(1− ν)(d+ 1)(xt − yt)

≥
(
µ+

λ+ ν − 1

rt+1

)
· xt+1 − ν

r
·

(
xt+1 + xt · 2

((
3

2

)t
− 1

))

+
1

2
(1− ν)(d+ 1)

(
1− 1

rt

)
· xt

=

(
µ+

λ+ ν − 1

rt+1
− ν

r

)
︸ ︷︷ ︸

:=A(ν)

·xt+1 +

(
1

2
(1− ν)(d+ 1)

(
1− 1

rt

)
− 2ν

r

((
3

2

)t
− 1

))
︸ ︷︷ ︸

:=B(ν)

·xt.

13



First observe that by using the definitions of λ, µ, we get

A(ν) =

(
2d + (d− 1)

(
1− 1

rt+1

)
− 1

r

)
· ν − d

(
1− 1

rt+1

)
≥
(

2d + (d− 1)

(
1− 1

rd+1

)
− 1

r

)
· ν − d

(
1− 1

rd+1

)
≥ 0,

where the first inequality holds since ν ≤ 1 and the second inequality is by
Definition 4.2 and ν ≥ ν̂. Since x ≥ 2, we get

A(ν) · xt+1 +B(ν) · xt ≥ (2A(ν) +B(ν)) · xt.

To complete the proof we show that 2A(ν) +B(ν) ≥ 0 for ν ≥ ν̂.

2A(ν) +B(ν)

=

(
2d+1 + 2(d− 1)

(
1− 1

rt+1

)
− 2

r
− 1

2
(d+ 1)

(
1− 1

rt

)
− 2

r

((
3

2

)t
− 1

))
· ν

− 2d

(
1− 1

rt+1

)
+

1

2
(d+ 1)

(
1− 1

rt

)
=

(
2d+1 + 2(d− 1)

(
1− 1

rt+1

)
− 1

2
(d+ 1)

(
1− 1

rt

)
− 2

r

(
3

2

)t)
· ν

− 2d

(
1− 1

rt+1

)
+

1

2
(d+ 1)

(
1− 1

rt

)
,

which again is a monotone increasing function in ν. Since ν̂ ≥ d
2d+d−1

by
Lemma 4.3 and ν ≥ ν̂, we get

2A(ν) +B(ν)

≥

(
2d+1 + 2(d− 1)

(
1− 1

rt+1

)
− 1

2
(d+ 1)

(
1− 1

rt

)
− 2

r

(
3

2

)t)
· d

2d + d− 1

− 2d

(
1− 1

rt+1

)
+

1

2
(d+ 1)

(
1− 1

rt

)
=

(d+ 1)(2d − 1) · rt+1 − 4d
(

3
2

)t · rt − (d+ 1)(2d − 1) · r + 4d2d

2(2d + d− 1)rt+1
.

Define D(d, t) as the numerator of this term. Thus,

D(d, t) = (d+ 1)(2d − 1) · rt+1 − 4d

(
3

2

)t
· rt − (d+ 1)(2d − 1) · r + 4d2d.

14



If r ≤ 4
3 then D(d, t) ≥ (d+ 1)(2d − 1) · r(rt − 1) ≥ 0,

for all integer d ≥ 1 and 0 ≤ t ≤ d. If r ≥ 4
3 then

D(d, t) ≥ (d+ 1)(2d − 1) · r(rt − 1)− 4d

(
3

2

)t
· (rt − 1)

≥

(
(d+ 1)(2d − 1) · 4

3
− 4d

(
3

2

)d)
· (rt − 1),

which is nonnegative for all integer d ≥ 4 and 0 ≤ t ≤ d. For t ≤ d ≤ 3,
D(d, t) ≥ 0 can be checked using elementary calculus. �

We are now ready to prove the upper bound of our main result.

Theorem 4.5 For congestion games with polynomial cost functions with
maximum degree d and nonnegative coefficients, we have

PoS ≤ max
r>1

(2dd+ 2d − 1) · rd+1 − (d+ 1) · rd + 1

(2d + d− 1) · rd+1 − (d+ 1) · rd + 2dd− d+ 1
.

Proof: Let s∗ be an optimum assignment and let s be a pure Nash equilibrium
with Φ(s) ≤ Φ(s∗). Such a Nash equilibrium exists by (1). Define xe = ne(s)
and ye = ne(s

∗). Then

SC(s) ≤ SC(s) + (d+ 1)(Φ(s∗)− Φ(s))

=
∑
e∈E

ne(s) · ce(ne(s)) + (d+ 1)
∑
e∈E

ne(s∗)∑
i=1

ce(i)−
ne(s)∑
i=1

ce(i)


=
∑
e∈E

xe · ce(xe) + (d+ 1)
∑
e∈E

(
ye∑
i=1

ce(i)−
xe∑
i=1

ce(i)

)
. (12)

Moreover, since s is a pure Nash equilibrium, we have

SC(s) =
n∑
i=1

Ci(s) ≤
n∑
i=1

Ci(s
∗
i , s−i)

≤
n∑
i=1

∑
e∈s∗i

ce(ne(s) + 1) =
∑
e∈E

ye · ce(xe + 1). (13)
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Let ν̂ as defined in Definition 4.2. Taking the convex combination ν̂ · (13) +
(1− ν̂) · (12) of those inequalities gives

SC(s) ≤
∑
e∈E

[
ν̂ · ye · ce(xe + 1) + (1− ν̂)xe · ce(xe) + (1− ν̂)(d+ 1)

(
ye∑
i=1

ce(i)−
xe∑
i=1

ce(i)

)]

With λ = d + 1 − dν̂ and µ = (2d + d − 1)ν̂ − d, applying Proposition 4.4
gives

SC(s) ≤
∑
e∈E

[µ · xe · ce(xe) + λ · ye · ce(ye)] = µ · SC(s) + λSC(s∗).

Thus,

SC(s)

SC(s∗)
≤ λ

1− µ
=

d+ 1− dν̂
d+ 1− (2d + d− 1)ν̂

,

By Definition 4.2, for all real numbers r > 1, we have

ν̂ ≥
d(1− 1

rd+1 )

2d + (d− 1)(1− 1
rd+1 )− 1

r

. (14)

Denote r̂ as the value for r > 1 which makes inequality (14) tight. Such a
value r̂ must exist since ν̂ is the minimum value satisfying this inequality.
So,

ν̂ =
d(r̂d+1 − 1)

2dr̂d+1 + (d− 1)(r̂d+1 − 1)− r̂d
.

Substituting this in the bound from Theorem 4.5 gives

PoS ≤ d+ 1− dν̂
d+ 1− (2d + d− 1)ν̂

=
(d+1)2dr̂d+1+(d2−1)(r̂d+1−1)−(d+1)r̂d−d2(r̂d+1−1)

2d(d+1)r̂d+1+(d2−1)(r̂d+1−1)−(d+1)r̂d−2dd(r̂d+1−1)−d(d−1)(r̂d+1−1)

=
(2dd+ 2d − 1)r̂d+1 − (d+ 1)r̂d + 1

(2d + d− 1)r̂d+1 − (d+ 1)r̂d + 2dd− d+ 1

≤ max
r>1

(2dd+ 2d − 1) · rd+1 − (d+ 1) · rd + 1

(2d + d− 1) · rd+1 − (d+ 1) · rd + 2dd− d+ 1
,

which proves the upper bound. �
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5 Separation

For the linear case, the Price of Stability was equal to the Price of Anarchy
of dominant strategies, as the matching lower bound instance would hold for
dominant strategies. Here, we show that linear functions was a degenerate
case, and that this is not true for higher order polynomials. We show that
for games that possess dominant equilibria, the Price of Anarchy for them
is strictly smaller3. Our separation leaves as an open question what is the
exact value of the Price of Anarchy of dominant strategies for these games.
Our separation result uses the following technical proposition, the proof of
which can be found in the appendix.

Proposition 5.1 Let λ = 7
4 , µ = 1

4 and ν = 3
4 . Then for all quadratic cost

functions c with nonnegative coefficients and for all nonnegative integers x, y
we have

ν · y · c(y) + y · c(x+ 1)− ν · x · c(y + 1) ≤ µ · x · c(x) + λ · y · c(y).

Theorem 5.2 Consider a congestion game with quadratic cost functions
which admits a dominant strategy equilibrium s. Then SC(s)

opt ≤
7
3 .

Proof: Let s∗ be an optimum assignment and let s be the dominant strategy
equilibrium. Define xe = ne(s), ye = ne(s

∗) and ∆e(x) = ce(x + 1) − ce(x).
Since s is a dominant equilibrium we have Ci(s

∗
−i, si) ≤ Ci(s

∗) for every
player i. Thus,

SC(s∗) =
n∑
i=1

Ci(s
∗) ≥

n∑
i=1

Ci(s
∗
−i, si)

=
n∑
i=1

∑
e∈si∩s∗i

ce (ne(s
∗)) +

n∑
i=1

∑
e∈si\s∗i

ce (ne(s
∗) + 1)

=
∑
e∈E

ne(s)ce (ne(s
∗) + 1)−

n∑
i=1

∑
e∈si∩s∗i

∆e (ne(s
∗))

=
∑
e∈E

xece (ye + 1)−
n∑
i=1

∑
e∈si∩s∗i

∆e (ye) . (15)

3By a more elaborate analysis one can come up with an upper bound of ≈ 2.242 Here
we just wanted to demonstrate the separation of the two measures.
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Following similar steps, since s is a pure Nash equilibrium, we have

SC(s) =
n∑
i=1

Ci(s) ≤
n∑
i=1

Ci(s−i, s
∗
i ) =

∑
e∈E

yece (xe + 1)−
n∑
i=1

∑
e∈si∩s∗i

∆e (xe) .

(16)

Summing up (15) and (16), we end up with

SC(s)

≤ SC(s∗) +
∑
e∈E

(yece (xe + 1)− xece (ye + 1)) +
n∑
i=1

∑
e∈si∩s∗i

(∆e (ye)−∆e (xe))

≤ SC(s∗) +
∑
e∈E

(yece (xe + 1)− xece (ye + 1)) . (17)

Taking the convex combination ν · (17) + (1− ν) · (16) gives

SC(s)

≤ ν ·
(
SC(s∗) +

∑
e∈E

(yece (xe + 1)− xece (ye + 1))

)
+ (1− ν) ·

(∑
e∈E

yece (xe + 1)

)
= ν · SC(s∗) +

∑
e∈E

(yece (xe + 1)− ν · (xece (ye + 1))) . (18)

With λ = 7/4, µ = 1/4, and ν = 3/4, applying Proposition 5.1 gives

SC(s) ≤
∑
e∈E

[µ · xe · ce(xe) + λ · ye · ce(ye)]

= µ · SC(s) + λSC(s∗).

Thus,

SC(s)

SC(s∗)
≤ λ

1− µ
=

7

3
< 2.36,

which proves the theorem. �

Observe that this upper bound is strictly smaller than the exact value of
the PoS for general congestion games with quadratic cost functions from
Theorem 1.1, which was ≈ 2.36.
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Appendix

6 Material for proof of Proposition 4.4

The following is used in the proof of Proposition 4.4.

Lemma 6.1 Define λ = d + 1 − dν and µ = (2d + d − 1)ν − d and fix a
maximum degree d. Then for all nonnegative integers x ≤ y and for all
0 ≤ t ≤ d, we have

(µ+ ν − 1) · xt+1 + λ · yt+1 − ν · y(x+ 1)t + (1− ν)(d+ 1)

(
x∑
i=1

it −
y∑
i=1

it
)
≥ 0. (19)

Proof: We consider the cases x < y and x = y separately.
Case x < y:
In this case

y(x+ 1)t ≤ yt+1 (20)

and

x∑
i=1

it −
y∑
i=1

it = −
y∑

i=x+1

it ≥ (x− y)yt ≥ xt+1 − yt+1. (21)

Using (20),(21) and the above values for λ, µ, we can lower bound the left-
hand-side of (19) by

(µ+ ν − 1) · xt+1 + λ · yt+1 − ν · yt+1 + (1− ν)(d+ 1)
(
xt+1 − yt+1

)
= (µ+ ν − 1 + d+ 1− νd− ν) · xt+1 + (λ− ν − d− 1 + νd+ ν) · yt+1

= (µ+ d− νd) · xt+1 + (λ− d− 1 + νd) · yt+1

= (2d − 1)ν · xt+1

≥ 0,

as needed.
Case x = y:
Using the binomial theorem we can bound

(x+ 1)t =
t∑
i=0

(
t

i

)
· xt−i ≤ xt ·

t∑
i=0

(
t

i

)
= 2t · xt ≤ 2d · xt.
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With the assumption x = y, this implies

(µ+ ν − 1) · xt+1 + λ · yt+1 − ν · y(x+ 1)t

= (µ+ ν − 1 + λ) · xt+1 − ν · x(x+ 1)t

≥ (µ+ ν − 1 + λ− 2dν) · xt+1

= 0,

as needed. �

7 Proof of Proposition 5.1

Proof: It is sufficient to prove the inequality for monomials of degree 0, 1,
and 2 respectively. For d = 0, this is trivially true. For d = 1, this is
equivalent to

1

4
· x2 + y2 +

3

4
· x(y + 1)− y(x+ 1) ≥ 0,

and this is true, since

x2 + 4y2 − 4y(x+ 1) + 3x(y + 1) = (x− 2y)2 + y(3x− 4) + 3x ≥ 0.

The last inequality is easy to check, since for x ≥ 2 all terms are nonnegative,
and the cases x = 0, x = 1 are trivially true.

For d = 2, we need to show that

f(x, y) = x3 + 4y3 − 4y(x+ 1)2 + 3x(y + 1)2 ≥ 0.

It is trivial to verify the inequality for y = 0 and is easy to see that f(x, 1) =
x(x− 2)2 ≥ 0. Hence, it suffices to show the inequality for y ≥ 2.

We can rewrite f(x, y) in the following way

f(x, y) = x

(
x− 5

2
y

)2

+A(y),

where

A(y) := yx2 +

(
−13

4
y2 + 3− 2 y

)
x+ 4 y3 − 4 y.

It suffices to show A(y) ≥ 0 for y ≥ 2. However, for y = 2, it is A(2) =
2(x− 3)(x− 4) ≥ 0.
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Therefore, it is enough to show A(y) ≥ 0 for y ≥ 3. This is a quadratic
function with respect to x, with discriminant

∆ = −
(

87

16
y4 − 13 y3 − 1/2 y2 + 12 y − 9

)
.

This can be easily shown to be always negative for y ≥ 3 (for example by
iteratively substituting yd ≥ 3yd−1 for d = 4 down to d = 1, as the coefficient
of d always remains positive in every step). �

We are now ready to prove Theorem 5.2.
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